
LightTrader: A Standalone High-Frequency Trading
System with Deep Learning Inference Accelerators

and Proactive Scheduler
Sungyeob Yoo∗§

sungyeob.yoo@kaist.ac.kr
KAIST

Hyunsung Kim∗
hyunsungkim@rebellions.ai

Rebellions Inc.

Jinseok Kim
jinseok@rebellions.ai

Rebellions Inc.

Sunghyun Park
sunghyun.park@rebellions.ai

Rebellions Inc.

Joo-Young Kim
jooyoung1203@kaist.ac.kr

KAIST

Jinwook Oh
j.oh@rebellions.ai

Rebellions Inc.

Abstract—Recent research shows that artificial intelligence
(AI) algorithms can dramatically improve the profitability of
high-frequency trading (HFT) with accurate market prediction,
overcoming the limitation of conventional latency-oriented ap-
proaches. However, it is challenging to integrate the computa-
tionally intensive AI algorithm into the existing trading pipeline
due to its excessively long latency and insufficient throughput,
necessitating a breakthrough in hardware. Furthermore, harsh
HFT environments such as bursty data traffic and stringent
power constraint make it even more difficult to achieve system-
level performance without missing crucial market signals.

In this paper, we present LightTrader, the world’s first AI-
enabled HFT system that incorporates an FPGA and custom AI
accelerators for short-latency-high-throughput trading systems.
Leveraging the computing power of brand-new AI accelerators
fabricated in TSMC’s 7nm FinFET technology, LightTrader
optimizes the tick-to-trade latency and response rate for stock
market data. The AI accelerators, adopting Coarse-Grained
Reconfigurable Array (CGRA) architecture, which maximizes
the hardware utilization from the flexible dataflow architecture,
achieve a throughput of 16 TFLOPS and 64 TOPS. In addition,
we propose both workload scheduling and dynamic voltage
and frequency scaling (DVFS) scheduling algorithms to find an
optimal offloading strategy under bursty market data traffic and
limited power condition. Finally, we build a reliable and re-
runnable simulation framework that can back-test the historical
market data, such as Chicago Mercantile Exchange (CME), to
evaluate the LightTrader system. We thoroughly explore the
performance of LightTrader when the number of AI acceler-
ators, power conditions, and complexity of deep neural network
models change. As a result, LightTrader achieves 13.92× and
7.28× speed-up of AI algorithm processing compared to existing
GPU-based, FPGA-based systems, respectively. LightTrader with
multiple AI accelerators achieves up to 99.5% response rates,
while LightTrader with the proposed workload scheduling and
DVFS scheduling algorithm relieves the miss rate from 17.1% to
23.1%.

*These authors contributed equally to this work.
§Sungyeob Yoo performed this work as an intern at Rebellions Inc.
This research was supported in part by the Information Technology

Research Center (ITRC) support program (IITP-2020-0-01847) supervised
by the Institute for Information & Communications Technology Planning &
Evaluation (IITP) and in part by the National IT Industry Promotion Agency
(NIPA) (R-20210319-010567, Development of AI accelerator and its software
full stack for edge server system), both under the Ministry of Science and ICT
(MSIT), Korea.

0

20

40

60

Years
M

ar
ke

t S
ha

re
 (%

)

2005 2007 2009 2011 2013 2015 2017

Fig. 1. HFT’s share of US equity trading volumes [20]

I. INTRODUCTION

High-frequency trading (HFT) is an algorithmic trading
method that uses high-performance computers to transact a
large number of orders in fractions of a second [1]. HFT firms
exploit the speed advantage over other traders to capture profit
opportunities by predicting the market’s short-term move-
ments, thereby frequently making beneficial orders [2]. The ac-
tivities of HFTs primarily improve the market quality by pro-
viding market fluidity, discovering the fair price, and resolving
market inefficiencies [3]–[5]. Due to the great success of HFT
firms over the last few decades, HFT has become dominant in
modern exchanges, taking more than half of the total trading
volume in the US equity market, as shown in Figure 1. As the
competition has intensified, however, the market’s short-term
dynamics are becoming more and more chaotic, increasing
the noise level and non-linearity of the high-frequency market
data [6]–[8]. Accordingly, the conventional HFT strategies
now show limitations in capturing profit opportunities, earning
only marginal profit from the competition [9]–[11]. With the
advent of artificial intelligence (AI) and machine learning
(ML) technology, recent works [12]–[16] have proposed to
utilize deep neural networks (DNNs) to capture hidden profit
opportunities from the high-frequency market data, which was
not possible by the conventional methods [17]–[19].

Despite the promising performance in predicting the mar-
ket’s movements, AI algorithms are difficult to deploy in
an actual HFT system because the AI algorithms require
excessive computation workload combined with the system’s
requirements for rapid response to irregular input. As the

1

market condition changes rapidly and frequently, the HFT
system should make prompt actions by ingesting a vast
amount of market data, which requires both low latency
and high throughput processing [21], [22]. In the HFT pro-
cess, tick-to-trade, defined as the process between receiving
the market data and transferring the order, is comprised of
multiple pipeline stages such as network packet processing,
market data processing, and order transmission [21], [23].
The tick-to-trade process should be extremely short because
the excessive latency reduces the probability of getting profit
from short-living opportunities [8], [11], [24]. Meanwhile, the
HFT system’s limited throughput causes drops in the input
data traffic [25] because the few input data may not meet
the proposed deadline, thereby having a chance of missing
crucial information in the market data. Although the AI-
enabled HFT process can increase the prediction accuracy,
its burdensome DNN computation deteriorates both latency
and throughput, making it hard to be deployed [26], [27].
In this regard, the conventional hardware accelerators such
as graphics processing units (GPUs) and field-programmable
gate arrays (FPGAs) are not suitable for the AI-enabled HFT
process due to either excessive computing latency and limited
throughput, or both. Therefore, there is a growing demand to
harness domain-specific AI accelerators into the existing HFT
systems to overcome the latency and throughput limitations
caused by the AI algorithm computation [26]. Although many
AI accelerators have been proposed [28]–[30], none of them is
developed for the HFT system. The existing systems integrat-
ing AI accelerators cannot resolve the system-level challenges
associated with the HFT environment since it requires features
that should be supported by the hardware architecture design.

In this paper, we propose LightTrader, the product-level AI-
based HFT system that utilizes latency-optimized AI accel-
erators with a delicately tuned system configuration. Based
on the AI accelerator architecture and design choice inte-
grating multiple accelerators under power-limited conditions,
the DNN processing latency and throughput are drastically
improved compared to the existing FPGA-based or GPU-
based systems while allowing the seamless integration to
the conventional trading pipeline via the dedicated offloading
engine. We also explore the best system configuration that
optimizes the system-level performance for various HFT en-
vironments. LightTrader adopts a new workload scheduling
and dynamic voltage frequency scaling (DVFS) scheduling
for DNN processing to address the system-level requirements
such as handling bursty input traffic with the conservative risk
management policy and stringent power constraints of the co-
location server.

Our main contributions are summarized as follows.
• We propose LightTrader, the world’s first product-level

AI-enabled HFT system integrating an FPGA and cus-
tom AI accelerators for a short-latency-high-throughput
trading system.

• The custom AI accelerator, adopting Coarse-Grained Re-
configurable Array (CGRA), which maximizes the hard-
ware utilization from the flexible dataflow architecture,

(a)

HFT

System

HFT

System

HFT

System

Co-location

Bid
$190
Qty=2

Order FIFO

Bid
$210
Qty=1

Tick DataOrders

($)
Price

Ethernet/UDP

Market Data Feed

Packet Parser

Pre-Processing

DNN Algorithm

Order Generator

Ethernet/TCP

Matching Engine

(b)

Tick-to-trade latency

Limit Order Book

HFT

System

BARC

Exchange Server

SPY

Matching EngineOrder
Sequencer Data Feed

Market

Binary

Protocol

Limit Order Book
Added Matched

23
0

22
0

21
0

20
0

19
0

18
0

17
0

Bid
 Ask

Fig. 2. (a) HFT infrastructure where the HFT systems are installed at the
co-location server close to the exchange server for the direct access. (b) An
end-to-end AI-enabled HFT process that receives tick data from the market
feed, predicts market movement with a DNN algorithm, and transmits orders
to the matching engine.

achieves a throughput of 16 TFLOPS and 64 TOPS.
• We propose a workload scheduling and dynamic power

distribution algorithm to find an optimal offloading strat-
egy for AI algorithm computation under bursty market
data traffic and limited power condition.

• We build a simulation framework that conducts a back-
test using actual historical market data and thoroughly
explores the performance of LightTrader for different
system configurations.

• The proposed LightTrader system achieves 13.92× and
7.28× speed-up of AI algorithm processing compared to
existing GPU-based, FPGA-based systems, respectively.
LightTrader with multiple AI accelerators achieves up
to 99.5% response rates, while LightTrader with the
proposed workload scheduling and DVFS scheduling
algorithm relieves the miss rate from 17.1% to 23.1%.

II. BACKGROUND

A. HFT Process

Figure 2(a) shows the overall infrastructure of HFT, which
involves the exchange server and the co-location warehouse
where all the HFT systems are located. While various entities
are involved in the trading process, the end-point of orders is
the matching engine in an exchange server, where bid (buy)
side and ask (sell) side orders for each security symbol are
registered and matched within limit order books (LOBs). The
LOB is the canonical representation of the market condition
from which the HFT strategies extract features and determine
their actions [31]. The LOB contains the price, quantity, and
side information of registered orders for a given security
symbol, where the orders are removed whenever a pair of
bid and ask orders that match each other. The orders with
the same price are aggregated to each price level, where the
cheaper asks and more expensive bids are located in the lower

2

 Added

Price

AS
K

BI
D

$ 1.01
$ 1.02
$ 1.03

$ 0.97
$ 0.98

Size

Matched

DNN algorithmInput feature map

LOBs for each tick step

Price

AS
K

BI
D

$ 1.01
$ 1.02
$ 1.03

$ 0.97
$ 0.98

Size

CNN, LSTM, Transformer, ...

Inference result

$ 0.99

Price
AS

K
BI
D

$ 1.02
$ 1.03

$ 0.97
$ 0.98

Size

$ 0.99

Price movement on

prediction horizon

(up, down, stationary)

Fig. 3. DNN-based price movement prediction from the input feature map
of which the columns consist of parameters of limit order books at each tick
step.

level. HFT companies install their system on a co-location
venue close to the exchange servers in order to reduce the
physical networking latency between the servers [10]. The
overall HFT operation flow is as follows. Once HFT systems
transmit order packets to an exchange server that specifies
the security symbol, price, volume, and side of the order,
the orders are sequenced in chronological order and delivered
to the matching engine. The matching engine looks up the
corresponding LOB for a given symbol, matches the matching
pairs, and registers the unmatched incoming orders to the
LOB. More precisely, the orders in the LOB are filled with the
price/time priority, where orders at the lower price level are
filled first, and the earlier orders are filled first for orders at the
same level. Note that HFT systems often make ‘cancel orders’
or ‘replace orders’ for the existing order in LOB if the market
condition has changed and the order is thought stale, which
also updates the LOB and generates tick data. HFT systems
should track LOB movements and make proper responses, i.e.,
adding/replacing/canceling orders or doing nothing, from the
tick data.

As shown in Figure 2(b), the HFT systems basically perform
the trading pipeline from receiving tick data to making an
order, called the tick-to-trade. Once the tick data is received
from the market data feed, the Ethernet/UDP module first
handles the network packet to obtain a payload containing
the tick data in a hardware-friendly binary format. Then the
packet parser decodes the tick data, and the obtained tick data
is passed to the next module to update the local LOB stored in
the trading pipeline. The HFT maintains a local LOB which
represents a few lowest levels of the global LOB to relieve
the storage and management overhead. Next, the HFT system
analyzes the LOB data and generates orders at the following
modules based on proprietary trading algorithms. In an AI-
based trading process, the AI algorithm analyzes the input
feature map of the LOB constructed by the pre-processing
stage, while the order generator stage utilizes the analysis
results to make advantageous orders. Finally, the generated
orders are transmitted to the matching engine via TCP/Ethernet

protocol.
Generally speaking, a trading pipeline earns more profit if

it implements lower latency and more precise trading algo-
rithms. Note that the exchange’s co-location server guarantees
identical and lowest network latency for all HFT systems;
therefore, the tick-to-trade latency is the only factor that an
HFT firm can squeeze out from the overall latency. Whereas
the conventional tick-to-trade process without the AI algorithm
processing takes about one microsecond when implemented
on an FPGA [22], [23], [32], the AI algorithm processing can
solely take up to several milliseconds without the dedicated
accelerator depending on the system design and algorithmic
complexity. Also, note that the exchange’s co-location server
charges an exceptionally high fee for using space, power units,
and high-speed connections, so much so that it has become the
major inhibitor to realizing profit using an HFT system.

B. AI Algorithms for HFT strategy

Many research works have studied how to use AI algorithms
to predict the future movement of financial time series. Most
of them focused on forecasting the exact price value or
direction of the price movement [33]. In particular, various
DNN models such as convolutional neural networks (CNNs),
recurrent neural networks (RNNs), and transformers have been
proved to be effective in forecasting short-term price changes.
For example, several previous works about high-frequency
finance time series forecasting [13], [14], [34] showed even
a simple DNN model such as a vanilla CNN and long short-
term memory (LSTM) could outperform the conventional fore-
casting methods. In addition, the advanced model structures
that consider detailed characteristics of high-frequency data
further improved the forecasting precision compared to the
simple DNN models. Zhang et al. [12] presented a DNN
model named DeepLOB that combines CNN layers and LSTM
layers to handle both the ultra-short-term and short-term
features, substantially improving the accuracy of predicting
the direction of price change up to 85%. Likewise, Wallbridge
[15] combined convolutional layers and transformer blocks to
build TransLOB architecture, where it achieved the prediction
precision up to 90% owing to the self-attention mechanism
that overcomes the noisy high-frequency finance time series.

Note that the tick data is an event-based time-series [35],
of which the time interval between tick data samples is highly
variable since the LOB is updated irregularly whenever an
exchange server receives an order from HFT systems. In
addition, the inter-tick time gap is highly variable, from sub-
microseconds to a few seconds even for the highly volatile
securities, and the event is concentrated within a small fraction
of the whole time series [6], [36], [37]. Thus, the above
algorithms commonly adopt the tick step-based scheme, where
the time step is progressed by the tick event, not by the
wall-clock time. Figure 3 shows the process of predicting the
price movement adopted by various financial DNN models
including DeepLOB [12], TransLOB [15], and a simple CNN
[14]. In this process, the model is trained to forecast the
price movement for a given tick time, i.e., for the prediction

3

horizon, using an input feature map constructed from LOBs.
More precisely, the LOB snapshots are converted into a
two-dimensional input feature map of which each column
is derived from the price and volume of the LOB at each
tick step. From the input feature map, the DNN model then
predicts the direction of price, i.e., up, down, or stationary,
at a prediction horizon compared to the current price. As a
result, an HFT system can make a beneficial order before the
market actually moves in the expected direction.

C. Requirements of AI-enabled HFT system

Note that the above researches on AI algorithms for HFT
strategy only focus on the algorithm-level performance, disre-
garding the challenges of deploying them in an actual environ-
ment. This section elaborates on the system-level requirements
that must be taken into account to implement a practical AI-
enabled HFT system.

Latency, throughput, and response rate The latency and
throughput of the AI algorithm computation in Figure 3 are
the most significant factors for the profitability of the AI-
enabled HFT system. Even if the AI algorithms showcase a
high prediction precision for the future market condition, the
predicted information is only valid within the prediction hori-
zon, meaning that only limited computation time is allowed
for the tick-to-trade process, and it is extremely short in most
cases. Also, it is well known that there is a probability that the
profit opportunity vanishes even before the prediction horizon
ends [10], [26], [38]. These prove that minimizing the tick-to-
trade latency by accelerating the time-consuming AI algorithm
computation is always preferred in the HFT system.

Throughput is also an important factor in the profit of an
HFT strategy. Since HFT firms generally expect only marginal
profit from a single opportunity, they are necessitated to find
profit opportunities as much as possible and make a large
number of orders for the given input data streams [1], [38]. In
other words, the more input queries are investigated, the more
profits are expected from an HFT strategy, which means the
response rate for the input query should be maximized.

Power efficiency Due to the limited space and power supply
constraints of the co-location server, HFT firms are eager
to increase their performance-per-watt system efficiency of
the servers alongside the compact fan-less card design and
its low power operation. For the typical co-location-server-
target PCIe card, only 75 Watts of the power budget is
allocated for the entire card, so the new accelerators (GPUs,
FPGAs, or AI accelerators) are designed to consume much
less power than the maximum budget in consideration of
other system components such as memory modules, high-
speed interfaces, etc. This power constraint becomes a major
bottleneck in HFT servers and introduces the hazards of power
failures in the system, especially when the new AI acceleration
feature needs to be deployed for HFT. Therefore, an intelligent
power utilization strategy is required to optimize the system
performance for different power budgets and workloads.

Bursty tick data traffic and miss rate The tick data
shows an extremely bursty traffic pattern because of the

chaotic interactions between traders [39], [40], of which the
time interval between ticks dynamically varies from a few
microseconds to a few seconds even if only a single symbol
is subscribed. In addition, it is not uncommon that the burst
of data accompanies the abrupt market condition changes,
which can be a great change or critical risk for HFT strategies
[41]–[46]. For instance, even a small number of orders can
trigger a massive number of orders, which again triggers other
orders [47]. Note that it was reported that this kind of market
disruption occurred more than once a day [41], [43], being
more frequent as the trading volume is sharply increasing
every year [9].

In this case, the HFT system should allow maximum
throughput to manage the risk of missing crucial micro-
movements from missed tick signals, processing as many input
data as possible within a deadline, rather than optimizing the
latency of each query [38]. Under the bursty input condition,
processing with a small batch size is undesirable to effectively
utilize the available resources to process as many as possible.
For example, an HFT system may temporally increase the
batch size in case of a data burst to process multiple queries in
parallel to minimize the number of missed queries. However,
if the batch size is too large, the latency becomes excessively
long, increasing the probability of violating the deadline.
Therefore, the batch size must be actively scaled with a fine
granularity.

D. AI-enabled HFT systems

GPU and FPGA have been used to build the GPU-based and
FPGA-based systems to accelerate AI-enabled HFT, respec-
tively. The GPU-based system consists of a central processing
unit (CPU), network interface controller (NIC) card, and GPUs
since the GPUs have no QSFP port for communication with
the exchange servers. In the system, the CPU and NIC card
process the network packet processing, input pre-processing,
and output post-processing, while the GPUs accelerate the
core DNN algorithm. However, as GPU’s architecture is
throughput-oriented, it is not suitable for latency-sensitive
HFT operations. Furthermore, most job batch sizes in AI-
enabled HFT are set to single due to the short-term market
dynamics, so it is hard for GPU to achieve the best through-
put performance. Different from the GPU-based systems, the
FPGA-based system consists of FPGA boards with on-board
QSFP ports. Leveraging the design flexibility, the FPGA
boards process the entire pipeline, including the computation-
ally intensive DNN algorithm. The FPGA-based system uses
dedicated logic circuits to accelerate the entire pipeline with
lower latency than the GPU-based system. However, FPGAs
have limited computing resources compared to the demanding
computational requirements of AI-enabled HFT, resulting in
insufficient throughput.

To overcome the limitations of the existing AI-enabled
HFT systems, a dedicated standalone system is necessitated
with the consideration of the requirements described in the
previous section. Furthermore, since the active research and
development of AI-based HFT solutions in the finance industry

4

FP
G

A

QSFP QSFP

UDP/IP

Order

Book

TCP/IP

Offload

Engine

PCIe Controller

DRAM

In
te

rc
on

ne
ct

Packet

Parser

Trading

Engine

DVFS Controller

L2$

DRAM Controller

DMA

Scheduler

PCIe Lane

Ethernet

A
I A

cc
el

er
at

or

Trading Pipeline DNN Pipeline

Multi-phase

PMIC

Host ServerExchange Server
Market Data

Orders

Configurations

Monitoring

DNN Kernel Data

Multi-phase

Controller

A
I A

cc
el

er
at

or
s

FPGA
QSFP Ports

LightTrader

(a) (b)

DRAM

M
EM

C2C
PLL

Fig. 4. (a) Photograph of LightTrader prototype (b) Overview of the proposed LightTrader system integrating accelerated DNN pipeline and conventional
trading pipeline

have been dedicated to solving practical problems in different
markets, customized neural networks are rapidly evolving
to aim for different goals. This technical trend opens up a
chance to adopt the specialized AI accelerators in HFT that
can provide accurate inference and short processing latency
via floating point support and flexible dataflow structure,
respectively.

III. LIGHTTRADER SYSTEM

We propose LightTrader, the world’s first AI-enabled HFT
solution that incorporates novel AI accelerator ASICs in an
FPGA-based system, to satisfy the system-level requirements
of AI-enabled HFT described in Section II-C. Figure 4(b)
shows the LightTrader system’s overall block diagram con-
sisting of an FPGA and AI accelerators. The AI accelerator
is designed to accelerate the DNN operations of HFT because
attaining a low latency and high throughput even after incor-
porating the DNN algorithm in the processing pipeline is the
key to successful AI-enabled HFT. Functionally, LightTrader
performs the end-to-end AI-enabled HFT that involves both
trading and DNN pipeline. We define the trading pipeline as
the conventional processing stages of HFT, such as market
data acquisition, packet processing, LOB look-up, and order
generation, whereas the DNN pipeline refers to the DNN
algorithm and its related operations within the AI-enabled
HFT. The FPGA plays a role of a central hub of the Light-
Trader system, being responsible for all the communications
around it, including the exchange servers, host server, and AI
accelerators. It also performs the entire trading pipeline as well
as the data preparation for offloading to the AI accelerators.
However, it should be noted that the DNN algorithm executed
by the accelerators is the most computationally challenging
and thus the bottleneck of the system. In addition, we develop
an end-to-end software stack for LightTrader. The in-house
deep learning compiler generates instructions optimized for

LightTrader with a DNN algorithm targeting HFT, and the run-
time driver monitors the LOB and order history of LightTrader.

A. Trading Pipeline

The trading pipeline primarily receives the market data from
the direct data feed and pre-processes them to transfer over to
the DNN pipeline. Once it receives the processing results from
the DNN pipeline, it performs the post-processing to stream
the generated orders up to the exchange server.

More specifically, the market data is received through the
Ethernet and UDP/IP connection and transferred to the packet
parser. The packet parser filters messages of interest and de-
codes the packet data coded by the market data protocol, such
as simple binary encoding (SBE) used in Chicago Mercantile
Exchange (CME). The decoded market data is used to update
the corresponding LOB and is passed to the offload engine
to build the input tensor for the DNN pipeline. The direct
memory access (DMA) module is responsible for transferring
an input tensor from the offload engine to the AI accelerators.
Once the inference is finished from the DNN pipeline, the
DMA module transfers the inference result back to the trading
engine to make orders. Finally, the trading engine generates
the orders and transmits them to the exchange server through
the Ethernet and TCP/IP connection.

Offload Engine The offload engine is in charge of pro-
cessing the LOB data and converting them to normal tensors
in order to offload them to the AI accelerators, as depicted
in Figure 5. First, the offload engine converts the LOB data
formatting with the data type defined in the market data
protocol into brain floating-point format (BF16). The LOB
data contains ten levels of bid and ask side orders, in which
each level contains the price and quantity for the security
symbol. Next, it normalizes the LOB data according to the
Z-score, which divides the distance from the mean by the
standard deviation, in which the mean and standard deviation

5

BI
D

/A
SK

 P
ric

e
&

Vo
lu

m
e Input

Ty
pe

C
on

ve
rs

io
n

Offload Engine

Z-
sc

or
e

N
or

m
al

iz
at

io
n

Output

FIFO Fe
at

ur
e

M
ap

G
en

er
at

or

Fig. 5. The micro-architecture of the offload engine

values are obtained from historical market data. After Z-score
normalization, one feature vector is generated for the LOB
data of a tick. As the DNN models use a two-dimensional
(2-D) input feature map made of feature vectors from recent
ticks, the offload engine stacks a feature vector into FIFO and
generates an input tensor for the DNN pipeline. Once an AI
accelerator is ready for inference, the DMA module transfers
the input tensor from the offload engine to the AI accelerator.
The offload engine manages the stale feature vectors and
input tensors, enabling input feature map generation with less
storage.

Trading Engine The trading engine conducts the post-
processing on the inference output and generates orders from
the inference result of the AI accelerator. It allows HFT
firms to combine the AI algorithm with the conventional
trading algorithms or risk check logics, which are essential for
managing the risk of black-box properties of AI algorithms.
For example, the AI algorithm predicts the price will go down,
and the trading engine immediately makes an ask order to sell
the security holdings. The order information is encoded into
the order message format as specified by exchange servers.
For example, LightTrader supports the FIX message protocol
[48] and CME iLink 3 order entry message format [49] by
storing the message templates at the on-chip SRAM.

B. DNN Pipeline

The DNN pipeline receives the input tensor from the trading
pipeline and processes the tensor with the DNN algorithm
to predict the short-term market dynamics by leveraging
the computing power of AI accelerators. Although the core
computation of the DNN algorithm is performed on the AI ac-
celerators, various interface and control functions are handled
on the FPGA side, which includes the host interface, external
DRAM interface, accelerator interface, and multi-phase PMIC
interface for dynamic voltage and frequency scaling (DVFS).
The scheduler is the central module for the control tasks of
the DNN pipeline, performing both workload scheduling and
DVFS scheduling. Whenever the offload engine notifies that
an input tensor for the DNN pipeline is ready by generating an
interrupt signal, the scheduler determines the best batch size
that can yield the most profit under the given power options. At
the same time, it scales the voltage and clock frequency of the
AI accelerators to distribute the power efficiently. Meanwhile,
the input tensors are loaded to the L2 cache, and the DMA
module transfers them to the on-chip memory of each AI
accelerator when the batch size is determined by the scheduler.
The DNN kernel data are loaded into the L2 cache upon the

PE PE

PE PE

PE PE

EPE EPE

Processing Element CGRA Tensor Engine Memory Engine

DMEM

FMT

LSU
LSU

C2C

IMEM

FMT

PE

EPE

PE

PE

C
G

R
A

 M
em

or
y

I/F
 N

et
w

or
k
InstQ DEC

Register Bank

BF16

SIMD
ALU

INT8
SIMD
ALU

Data Mover

Fig. 6. Illustration of CGRA-based AI accelerator and its PE design

user request via PCIe, and they are transferred when the AI
accelerator is able to receive a new DNN kernel. Once the
AI accelerator finishes the inference, the scheduler receives
the inference result back and sends it to the trading engine
through the DMA module.

C. AI Accelerator

This section describes the architecture of the proposed
AI accelerator featuring latency-aware architectures and logic
designs. The ASIC-based AI acceleration is the essential part
of the proposed DNN pipeline, enabling latency-optimized
execution of different target networks in conjunction with
the conventional trading pipelines. The AI accelerator utilizes
the Brain floating-point 16 (BF16) execution units as the
main computational precision to maintain the original net-
work accuracy across different networks, whereas the lower
INT precision, INT8 and INT4, are still supported for the
acceleration of the quantized networks for the case that the
processing latency is prioritized over the accuracy due to the
equations of the profit and loss in the target exchange servers.
The BF16 and INT8 configurations achieve 16 TFLOPS and
64 TOPS computation capacity, respectively. Note that the
BF16 is especially useful for the DNNs targeting HFT since
the networks frequently utilize irregular network structures and
non-linear functions that necessitate precision in computations
and network parameters.

Overall Architecture The proposed accelerator adopts a
Coarse-Grained Reconfigurable Array (CGRA), which benefits
from its flexible dataflow architecture, accelerating different
types of neural networks available in the HFT system. The
accelerator utilizes the hyperblock-level flexibility, similar
to classical CGRA cores [50] [51] [52] which can deliver
balanced performance (i.e., latency) and Power-Performance-
Area (PPA) efficiency in the target applications. On the other
hand, the large-scale CGRAs [53] [54] designed to map the
entire end-to-end networks on the hardware fail to achieve high
energy efficiency. Figure 6 illustrates the high-level diagram
of LightTrader’s AI accelerator consisting of the two primary
components: tensor engine and memory engine.

Tensor Engine The main computational tasks of the AI
accelerator are processed in the tensor engine that comprises
a 2-D grid of the two types of processing elements (PEs),

6

Target PE Inputs

LSU

2D load

layout

formatter

FMT

Local

flattener

padding

Width First

Channel First

Height First

DMEM

L2$

C=
4

W=3

H
=3

W
=3

H=3

C=4

W=3

C
=4

H=3

C=4

W=3

H
=3

Fig. 7. Flexible data loading to PEs via LSU and FMT

R
es

po
ns

e
ra

te
 (%

) 100

90

80

70

Model Type
M5M1 M2 M3 M4

Fig. 8. Response rate for five different models (M1: simplest, M5: most
complex)

the regular PE and the extended PE (EPE). The regular PE
contains BF16 SIMD Arithmetic Logic Units (ALUs) and low-
precision INT8/4 based SIMD ALUs focusing on low-cost
support of Wide Multiplication-And-Accumulation (WMAC),
whereas the EPE has extended BF16 functions that supports
wider sets of complex arithmetic/logical operations including
exponential, logarithmic, and shift. Therefore, EPE can be
selectively activated for non-linear functions in inference. Each
PE and EPE can run different instruction streams stored in the
compact and dedicated instruction queue for the forwarded
input data from the neighboring elements and push the com-
putational results to the next target processing elements based
on the compiled sequence.

Memory Engine The memory engine consists of two Load
Store Units (LSUs), offering latency-hiding off-chip communi-
cation via our customized chip-to-chip (C2C) interface, and the
data memory (DMEM) and the instruction memory (IMEM)
that store the data and program code to allow double buffer-
ing between the computation and data transaction. DMEM
primarily stores the pre-fetched weight parameters before the
inference along with the activation data during the runtime,
where the L2 cache can be additionally utilized through the
C2C interface in case the data size exceeds the DMEM’s
capacity.

The data formatter (FMT) is proposed to support prompt
data transformation of the streaming data as in lowering,
shuffling, and transposing with the programmable controller
with specialized RISC-type instructions, the dedicated logic,
and the buffers. These layout formattings are implemented
with a series of instructions executed over multiple cycles
while their partial results are sent to PEs at their earliest
possible moment to minimize the latency impact of non-

to AI Chip

FPGA

I/O Clock
Domain

69-bit
1-bit : Type

64-bit: Data

4-bit : Parity

Lane 1

Lane 2

Lane 3

Xon/Xoff

W
at

er
m

ar
k

Core Clock

DomainLane 0

Input

Aligner

&

De-

Striper

(c) (d)

AI Chip
PCBFPGA

data

data

i_clk_io
~clk_io_ref

+ delay

clk_io_ref

data

data

i_clk_io_2
~o_clk_io

+ delay

o_clk_io

(a) (b)

FC
(FPGA to AI Chip)

REQ
(AI Chip to FPGA)

Data Lanes

Output Enable
(FPGA to AI Chip)

IDLEAI Chip

Xon
 Xoff

to FPGA

Z

16/18 bit Encoding

for 64-bit Word

18-bit

18-bit

18-bit

18-bit

Lane 0

CDC

FIFO

Single

Clock
FIFO

Fig. 9. Latency and bandwidth optimization for C2C interface (a) Source
synchronous clocking (b) Out-of-band flow control (c) Data striping (d)
Watermark-based flow control logic

computational operations for inference.
While the data transaction in the tensor engine is limited to

the neighbor PEs, the transaction to the memory engine utilizes
the memory interface network that provides high bandwidth
for multiple traffic sources. Figure 7 illustrates the high-
level illustration of transformation operations using LSU and
FMT. The multi-level memory modules can operate DNN-
optimized layout transformation without incurring any latency
overhead to the data loading by employing fine-grained double
buffering. At the first loading step, LSU fetches the input
tensor block into the DMEM, and then FMT flattens 2-D
tensors with respect to the height (H), width (W), or channel
(C) dimensions for target kernels. Depending on the data
parallelism exploited across the compute models, the output
of FMT loads and stores the different data structures to the
target PEs, and the instruction streams loaded in the tensor
engine run different instruction streams.

Latency Optimization The overriding design goal of the
AI accelerator for the HFT system is to minimize the latency
of DNN inference operation for all hardware components.
Figure 8 shows the response rate of the AI accelerator for
five different models (M1: simplest, M5: most complex). As
shown in the graph, the inference latency directly impacts the
response rate of the input queries. It implies that the network
accuracy, which usually increases with the inference latency,
should be compromised to avoid the response rate drop that
causes the profit decrease. In order to achieve the maximum PE
utilization while considering the latency or to increase effective
TFLOPS/TOPS for single inference, the AI accelerator utilizes
the spatio-temporal parallelism in the hyperblocks identified
by the data flow graph (DFG) of the target operations. For
the DNNs that HFT maps onto the acceleration hardware,
spanning from the small-size CNN networks to the large-
size LSTM models, the computational capacity (tensor engine

7

dimension) and instructions are carefully selected to deliver the
optimized latency performance and hardware efficiency. First
and foremost, the AI compiler chases sufficient instruction-
level parallelism in one hyperblock in the 2-D grid. The thread-
level parallelism is often tackled for the fused operations and
tensor-level parallel executions as the second target. The nested
loops in convolution and matrix multiplication are mapped
onto the 2-D grid with minimum consideration of batch-level
parallelism to acquire batch-insensitive inference performance.

As depicted in Figure 9, the AI accelerator communicates
with the host FPGA via the customized chip-to-chip inter-
face, which utilizes the customized protocol and the DMA
controller. For latency optimization, the source synchronous
clocking and out-of-band flow control (FC) are adopted to
relax the complexity of timing closure while increasing system
stability (Figure 9(a) and (b)). The lane stripping is also
applied to distribute the internal data to 16-bit width lanes
for effective bandwidth scalability (Figure 9(c)). The bi-
directional clocks are sent along each set of data lanes so
the lane-wise timing matching can ease the PCB-level data
communication with higher operating frequencies. For flow
control, the additional two bits are directly generated from the
interface FIFO watermarks to reduce the processing delay and
overhead (Figure 9(d)). This eventually adds up to the off-chip
bandwidth increase by 2.4× compared to the Interlaken [55]
implementation.

D. Adaptive Workload and DVFS Scheduling

In this section, we describe the proposed performance-per-
watt (PPW) based workload and DVFS scheduling algorithms
that cope with the dynamically-changing market data under a
power budget.

Batching and DVFS In order to develop our own resource
control scheduler, we adopt two well-known workloads and
power control mechanism: input batching and DVFS. Input
batching is a widely used technique in the DNN domain to
increase resource utilization by batching the inputs. As the
batch processing combines multiple inferences into a single
inference, it improves the system throughput while the latency
of each request becomes worse. DVFS is an active power
management technique that adjusts the voltage and clock
frequency at runtime. This technique can be either used to
scale up the voltage and clock frequency to improve the
performance or used to scale down the voltage and clock
frequency to save power. Note that frequent changing in DVFS
policy within a short time interval increases the risk of a power
failure as well as the overall latency due to the power switching
delay. These control hazards make the HFT system carefully
uses DVFS for maximization of the scaling benefits.

PPW Metric We observe that both the batch size and DVFS
policy affect the AI accelerator’s performance and power
consumption simultaneously. As the batch size increases, the
utilization of the tensor engine increases, which improves the
throughput with increased power consumption. Meanwhile,
scaling up the voltage and clock frequency reduces the in-
ference latency and also increases the power consumption.

Algorithm 1: Workload Scheduling
[Whenever scheduler issues new batch]
if unscheduled input tensor exists in offload engine then

for dvfs in dvfs options do
for bs in batch options do

t total← t infer[dvfs][bs] + t trans[bs]
if t total < t avail and
power[dvfs][bs] < power avail then

Push (dvfs, bs) to candidate queue
end

end
end
if candidate queue is not empty then

Select candidate with highest PPW metric
end
else

Remove oldest input tensor in offload engine
end

end

Putting the above observations together, we define the per-
formance per watt (PPW) metric calculated as follows.

PPW =
batch size

latency ∗ consumed power

PPW becomes higher as the batch size increases, the latency
per batch decreases, and the power consumption per batch
decreases. As the high value of the PPW factor means that
the AI accelerator operates computational-/energy-efficiently,
we can profile and use this factor when scheduling to distribute
the power among the AI accelerators.

PPW on workload scheduling Algorithm 1 shows the
workload scheduling algorithm that controls issuing process
of a new batch to an available AI accelerator, deciding an
optimal DVFS policy of AI accelerator and batch size for
the input tensors queued in the offload engine. dvfs options
is determined by the pre-defined DVFS policy table, and
batch options is the number of available batch sizes that
can be offloaded from the offload engine, respectively. Note
that batch and DVFS options affect system throughput, la-
tency, consumed power, and energy efficiency. Both batch
options with larger batch sizes and DVFS options with higher
clock frequencies and voltages consume more power while
improving system throughput. On the other hand, the batch
options with larger batch sizes improve energy efficiency and
deteriorate the latency of each request, whereas the DVFS
options with high clock frequencies and voltages improve the
latency of each request and worsen energy efficiency. To find
the optimal DVFS policy and batch size with the trade-off
between latency and energy efficiency, the scheduler explores
all the possible combinations of DVFS policy and batch size
and estimates a tick-to-trade of each case. The tick-to-trade,
denoted as t total, is the total latency of the entire DNN
pipeline, which is calculated as the summation of the DNN
inference latency, t infer, and DNN result transfer latency,
t trans. If the estimated tick-to-trade, t total, does not
exceed the available time, t avail, and the estimated power
of the selected DVFS policy does not exceed the available
power budget, power avail, the scheduler enqueues the pair
of DVFS policy and batch size to candidate queue. The pair
that generates the highest PPW metric score will be selected

8

Algorithm 2: Power Distribution in DVFS Scheduling
[Whenever scheduler distributes available power]
for AI accelerator not in idle AI accelerators do

power inc← calc power diff(new dvfs, dvfs, bs)
if power inc < power avail then

ppw inc← calc ppw diff(new dvfs, dvfs, bs)
Push (new dvfs, id, ppw inc) to candidate queue

end
end
if candidate queue is not empty then

Select candidate with highest ppw inc
end

and committed to the scheduler when there is more than
one set of rules in candidate queue. If candidate queue
is empty, which means there is no available offloading option
that meets the current performance and power constraint, the
scheduler defers the workload to the conventional trading
pipeline and removes it from the offload engine.

Once the scheduler determines the next target voltage and
frequency based on the algorithm, it applies the DVFS pol-
icy to the DVFS controller, which physically configures the
board’s multi-phase PMICs and the AI accelerator’s phase-
locked loop. On the same note, once the scheduler determines
the batch size, the scheduler assigns the DMA to transfer the
batch size of the input tensors from the offload engine to the
AI accelerator.

PPW on DVFS scheduling The DVFS scheduling consists
of steps: saving power and redistributing power. Firstly, the
DVFS scheduling algorithm saves power before the sched-
uler executes the workload scheduling to make room for a
new batch issue. The scheduler scales down the voltage and
frequency of all AI accelerators until each AI accelerator’s
inference time does not exceed the available time. Secondly,
once the scheduler finishes the workload scheduling, it re-
distributes the available power budget to the AI accelerators
as shown in Algorithm 2. The scheduler estimates the power
increase, power inc, of non-idle AI accelerators for the target
scaling-up voltage and frequency. If the power inc does not
exceed the available power budget power avail, the scheduler
calculates the PPW increase, ppw inc, with the current DVFS
policy, dvfs, the new DVFS policy, new dvfs, and batch
size, bs. It enqueues the pair of the new policy, new dvfs,
the AI accelerator’s ID, id, and the PPW increase, ppw inc,
to candidate queue. If one or more ppw inc exists in
candidate queue, the scheduler selects the candidate with
the highest ppw inc to maximize the sum of the PPW of AI
accelerators. The scheduler iterates Algorithm 2 until it can not
distribute the available power budget to the AI accelerators.
Once the scheduler finishes the power distribution, it assigns
the scheduled DVFS policies to the DVFS controller. Algo-
rithm 2 aims to maximize the performance of AI accelerators
while fully consuming the constrained power to improve the
response rate under bursty market data traffic and limited
power conditions.

E. LightTrader Software Stack

Figure 10 shows the overview of the end-to-end HFT
software stack, which includes the in-house Deep Learning

Host-Device PCIe Communication

HFT Driver DL Driver

Compiler

PCIe (Host)

PCIe (Device)

Order book L2$

Runtime driver

Update/Monitor

ML Framework

API Call

DRAM

Runtime Module,

UMD, KMD

Customer Application Layer

LightTrader App
API Call

Fig. 10. End-to-End HFT software stack with AI-enabled inference

TABLE I
SINGLE AI ACCELERATOR SPECIFICATION

Process Package Size Voltage Frequency Power

7 nm 8.7 mm×
8.7 mm *0.68-1.16 V *Up to

2.2 GHz
*Up to

10.8 Watts

*These conditions do not imply the optimum operating conditions for energy efficiency (i.e., TFLOPS/Watt)

compiler stack in tandem for tick-level inference. The key
components of the software stack include (1) end-to-end HFT
software which enables latency-optimized execution of host-
engaged function calls invoked from the trading application to
the runtime HFT driver; and (2) ML compiler which generates
the command streams for the latency-aware network execution
of a given neural network graph, managing compute and data
transaction tasks in the accelerators. For Runtime operation,
the ML driver’s commands that capture the position and se-
quence of the program stream and the weights are passed to the
HFT driver, which controls the host-to-accelerator traffic via
PCIe interface. The driver is currently implemented with the
customized in-house driver and Xilinx PCIe DMA (XDMA).

IV. EVALUATION

A. Evaluation Setup

LightTrader Prototype We build a LightTrader prototype
version 1.0 that integrates a Xilinx Ultrascale+ XCKU15P
FPGA [56] and AI accelerators for evaluation (see Fig-
ure 4(a)). This PCIe card includes a PCIe Gen3 x16 slot for
host interface, four QSFP ports for networking, 2GB DDR4
RAM modules, and multi-phase PMICs. The AI accelerator is
fabricated in TSMC 7nm FinFET technology to be operated
in a clock frequency ranging from 0.8 GHz to 2.2 GHz and
consumes up to 10.8 Watts as shown in Table I. This prototype
card utilizes four AI accelerators to meet the latency and
throughput requirements under the limited power budgets, in
which each accelerator is connected to the FPGA via the chip-
to-chip interconnect.

Baseline Systems For a fair comparison of LightTrader,
we use two popular HFT systems as comparing baselines: a

9

TABLE II
HFT DNN MODELS FOR EVALUATION BENCHMARK

Baseline Model Network Total OPs

Vanilla CNN CNN 93.0G
TransLOB [15] CNN+Transformer 203.9G
DeepLOB [12] CNN+LSTM 515.4G

GPU-based system and an FPGA-based system. As described
in Section II-D, the GPU-based system consists of a CPU,
NIC card, and GPU, and the FPGA-based system consists of
a CPU and an FPGA board. We use the GPU-based system
that harnesses an Intel i7-11700 CPU, Xilinx XtremeScale
X2522 NIC card [57], and a NVIDIA Tesla V100 GPU, and
the FPGA-based system that has an Intel i7-11700 CPU, and
a Xilinx Alveo U250 FPGA board [58].

Simulation Framework Because evaluating the HFT sys-
tems under real-time stock traffic is difficult, it is imperative
to set up a reliable and re-runnable simulation environment.
Therefore, we build a simulation framework that can back-
test the historical market data, including timestamp and LOB
snapshot, which consists of the price and volume of each level
on the ask and bid side at each tick. The latency of the HFT
system is calculated as the difference between the query input
time and the timestamp of the final order message, measuring
the tick-to-trade. The simulation framework tracks each input
query to see if its tick-to-trade meets the available time and
stores the result for the record. We also make the simulation
framework have an option of power constraint to emulate the
realistic co-location server environment. For faster simulation,
we profile the tick-to-trade and power consumption of each
system for many LOB data and target DNN models and use
them in the simulation framework.

We use the CME’s E-mini S&P 500 Futures as market data
to validate our system. For DNN algorithms, we choose vanilla
CNN, DeepLOB [12], and TransLOB [15] and modify them to
predict the future price movement in the market data. Table II
summarizes the network type and the total number of required
operations of the above DNN models.

B. Non-batching Performance

Methodology Since accelerating the DNN algorithm is the
key for AI-enabled HFT, we measure the latency, response rate
and effective TFLOPS/W of the baseline GPU-based system,
FPGA-based system, and LightTrader when they process input
queries immediately without batching (i.e., batch size = 1) to
evaluate their intrinsic performance clearly. We set a single
accelerator for LightTrader, giving each system a sufficient
power condition.

Latency, Response Rate, and Effective TFLOPS/W
Figure 11 shows the latency, response rate, and effective
TFLOPS/W of the three HFT systems for the target DNN mod-
els. LightTrader shows 119 µs, 160 µs, and 296 µs latency
for the vanilla CNN, TransLOB, and DeepLOB, respectively,
outperforming the GPU-based and FPGA-based system by
13.92× and 7.28× on average, as shown in Figure 11(a).

GPU-based System
 FPGA-based System
 LightTrader w/ Single AI Accelerator

(a) (b)

60

70

80

90

100

La
te

nc
y

(b
at

ch
 s

iz
e

=
1)

 (m
s) 4

3

2

1

Vanilla

CNN

Trans

LOB

Deep

LOB

R
es

po
ns

e
R

at
e

(%
)

500
Avg.

13.92x

7.28x

(c)

10

15

20

25

30

5
0N

or
m

al
iz

ed
 E

ffe
ct

iv
e

TF
LO

PS
/W 35

23.6x

Avg.
Deep

LOB

Trans

LOB

Vanilla

CNN

Avg.
Deep

LOB

Trans

LOB

Vanilla

CNN

11.6x

1.20x
1.31x

Fig. 11. Non-batching performance (a) Inference latency (b) Response rate (c)
Normalized effective TFLOPS/W of LightTrader with single AI accelerator
compared to GPU-based, FPGA-based system on various benchmarks (Vanilla
CNN, TransLOB, and DeepLOB)

Likewise, the LightTrader system shows a much higher re-
sponse rate than the other systems, proving that it can process
market data in high throughput. In Figure 11(b), the graph
shows that LightTrader achieves 94.2%, 91.9%, and 87.1%
response rate for the vanilla CNN, TransLOB, and DeepLOB,
respectively, outperforming the GPU-based system and FPGA-
based system by 1.31× and 1.20× on average. Moreover, the
LightTrader system shows much more effective TFLOPS/W
than the other systems, even though it consists of the FPGA,
peripherals, and only a single AI accelerator. Figure 11(c)
depicts that LightTrader achieves 23.6× and 11.6× higher
energy efficiency compared to the GPU-based system and
FPGA-based system on average, respectively.

Figure 11 shows that the FPGA-based and GPU-based
systems are not suitable for AI-enabled HFT processes due
to the excessive latency and limited throughput; the FPGA-
based system has limited computing resources, and the GPU-
based system suffers from low utilization as HFT DNN
algorithms are designed as small network considering the
trade-off between network accuracy and inference latency.
The LightTrader system with a single AI accelerator already
outperforms other systems (GPU-based, FPGA-based system),
but the LightTrader with a single AI accelerator fails to handle
few market data due to its limited throughput; hence the
LightTrader system with multiple AI accelerators is required.

C. Performance Scaling with Multiple AI Accelerators
Methodology LightTrader supports multiple AI accelerators

with the direct chip-to-chip interface to address the limited
throughput issue with a single AI accelerator. We measure the
response rate of LightTrader, which is the system-level metric
for throughput performance when the number of attached AI
accelerators varies. We change the number of AI accelerators
from 1 to 16 for the sufficient power condition of 75 Watts
and the limited power condition of 40 Watts. Note that the
AI accelerators receive the power, except the FPGA and
peripherals consume on the LightTrader system.

Without DVFS scheduling, we set the clock frequency and
voltage of the AI accelerator conservatively, considering all
AI accelerators operate simultaneously. As the number of AI
accelerators increases, the available power per AI accelerator

10

10

5

15

0

10

5

15

0 0

15

10

5

of AI Accelerators
1 2 4 8 16

M
is

s
R

at
e

(%
)

of AI Accelerators
1 2 4 8 16

of AI Accelerators
1 2 4 8 16Su

ffi
ci

en
t P

ow
er

 C
on

di
tio

n
LI

m
ite

d
Po

w
er

 C
on

di
tio

n
Vanilla CNN TransLOB DeepLOB

10

5

15

0

10

5

15

0 0

15

10

5

of AI Accelerators
1 2 4 8 16

M
is

s
R

at
e

(%
)

of AI Accelerators
1 2 4 8 16

of AI Accelerators
1 2 4 8 16

Baseline
 Baseline + WS
 Baseline + DS
 Baseline + WS + DS

Fig. 13. Miss rate of LightTrader adopting workload scheduling (WS), DVFS scheduling (DS), and both. They are compared to the baseline LightTrader
with no resource scheduling schemes when the number of AI accelerators vary from 1 to 16 under the sufficient and limited power condition for various
benchmarks (Vanilla CNN, TransLOB, and DeepLOB)

TABLE III
CLOCK FREQUENCY & AVAILABLE POWER CONFIGURATION

Sufficient Power Condition
of AI Accelerators 1 2 4 8 16
Available Power (W) 55.0 27.5 13.8 6.9 3.4

Frequency
(GHz)

Vanilla CNN 2.0 2.0 2.0 2.0 1.9
TransLOB 2.0 2.0 2.0 2.0 1.7
DeepLOB 2.0 2.0 2.0 2.0 1.6

Limited Power Condition
of AI Accelerators 1 2 4 8 16
Available Power (W) 20.0 10.0 5.0 2.5 1.3

Frequency
(GHz)

Vanilla CNN 2.0 2.0 2.0 1.6 1.2
TransLOB 2.0 2.0 1.9 1.5 1.0
DeepLOB 2.0 2.0 1.9 1.4 1.0

decreases, reducing its clock frequency and voltage accord-
ingly. The clock frequency and available power budget per AI
accelerator under the sufficient and limited power conditions
are listed in Table III.

Trade-off between Throughput and Power Figure 12
shows the response rate of LightTrader with the various
numbers of AI accelerators for the DNN benchmarks under the
two power conditions. Under sufficient power conditions, the
LightTrader systems with eight AI accelerators achieve 99.5%,
98.7%, and 95.9% response rates for vanilla CNN, TransLOB,
and DeepLOB, respectively. Under limited power conditions,
the LightTrader system with eight AI accelerators achieves a
98.9% response rate for vanilla CNN, while the LightTrader
systems with four AI accelerators achieve 97.8% and 94.0%
response rates for TransLOB, and DeepLOB, respectively. The
response rate tends to increase with the number of accelerators

of AI Accelerators# of AI Accelerators

Vanilla CNN
 TransLOB
 DeepLOB

Suffucient Power Condition

R
es

po
ns

e
ra

te
 (%

)

100

95

90

85

1 2 4 8 16

Limited Power Condition

R
es

po
ns

e
ra

te
 (%

)

100

95

90

85

1 2 4 8 16

Fig. 12. Response rate of LightTrader when the number of AI accelerators
varies from 1 to 16 under the sufficient power condition and limited power
condition for various benchmarks (Vanilla CNN, TransLOB, and DeepLOB)

as the overall system’s throughput improves, but the through-
put saturates with the increasing number of accelerators in both
conditions because the performance of each AI accelerator
decreases as the number of AI accelerators increases. After the
saturation point, the loss due to the degradation of individual
AI accelerators outweighs the performance gains obtained by
increasing the number of AI accelerators. It is necessary to
improve the throughput of an individual AI accelerator and
intelligently distribute power to improve system performance
without harming the performance of a single AI accelerator.
The trade-off emphasizes the need to improve the throughput
of an individual AI accelerator while intelligently distributing
the power to improve the overall system performance without
harming the performance of a single AI accelerator, which is
satisfied by the proposed workload and DVFS scheduling.

11

D. Putting Everything Together with Workload and DVFS
Scheduling

Methodology To ensure that the proposed scheduling al-
gorithms improve the LightTrader system, we evaluate the
end-to-end performance of LightTrader when it adopts noth-
ing (baseline), only workload scheduling (WS), only DVFS
scheduling (DS) scheduling, and both. We also explore the
power conditions (sufficient power and limited power condi-
tion), benchmarks (Vanilla CNN, TransLOB, and DeepLOB),
and the number of AI accelerators (1, 2, 4, 8, and 16).

Miss Rate Figure 13 shows various miss rate results of
LightTrader with four scheduling schemes under the sufficient
and limited power condition for three benchmarks. In this
comprehensive experiment, we have the following three ob-
servations. First, the result shows that workload scheduling
is effective in reducing the miss rate especially when the
number of AI accelerators is small. This is because the
LightTrader system with a small number of AI accelerators
tend to fail to handle the bursty tick data traffic due to the
limited throughput, and the workload scheduling with batching
helps in this situation. However, when the number of AI
accelerators of LightTrader is large, the workload scheduling
rarely improves the system’s miss rate because the throughput
of the system is already sufficient. LightTrader shows 21.4%,
18.4%, and 17.6% miss rate reductions, on average, with a
small number of AI accelerators (1, 2, and 4) for the vanilla
CNN, TransLOB, and DeepLOB, respectively.

Second, we also found that the DVFS scheduling is more
effective in reducing the miss rate when the number of AI
accelerators of LightTrader is large. As the DVFS scheduling
distributes the available power budget to the AI accelerators
based on the PPW metric, this scheduling algorithm effectively
reduces the miss rate of LightTraders with a large number of
AI accelerators. LightTrader shows 19.6%, 23.1%, and 17.1%
miss rate reductions, on average, with a large number of AI
accelerators (8 and 16) for the vanilla CNN, TransLOB, and
DeepLOB, respectively.

Lastly, the experimental results show that the LightTrader
systems with both workload and DVFS scheduling algorithms
meaningfully reduce the miss rate regardless of the changes
in the number of AI accelerators, power conditions, and
benchmarks. As a result, LightTrader shows 25.1%, 23.7%,
and 20.7% miss rate reductions on average with all the number
of AI accelerators (1, 2, 4, 8, and 16) for the vanilla CNN,
TransLOB, and DeepLOB, respectively.

V. RELATED WORKS

HFT Pipeline Accelerators As the tick-to-trade latency
of typical HFT systems has shrunk to the microseconds-
scale [59], the hardware accelerator has become mainstream
due to the order-of-magnitude acceleration performance. In
particular, FPGAs have been widely used to accelerate the
trading pipeline since it offers the line-rate processing capacity
for the tick-to-trade process while retaining flexibility [21]–
[23], [32], [60]. They mainly focus on the rapid processing
of the network layer and market data, but integrating AI

processing with them is almost impossible. LightTrader not
only implements the existing trading pipeline but also proposes
a solution for AI-based trading logic.

AI for High Frequency Market Data While various
research has been made to adopt AI algorithms to predict the
market’s mid- or long-term movement [61]–[64], the high-
frequency market data demonstrate different characteristics
from the longer-term market data [36], [37], [41], [44]. For ex-
ample, the short-term price movement is known to be driven by
endogenous factors such as volatility and liquidity rather than
exogenous factors such as macroeconomic events or trends,
which are utilized by the longer-term prediction methods
[59], [65]. Hence, numerous research has focused on financial
applications requiring short-term market prediction, such as
risk assessment [66], portfolio optimization [67], and order
book reconstruction [68]. The LightTrader can be generally
utilized for these financial applications, which require prompt
AI algorithm processing.

Off-the-shelf AI Accelerators The AI accelerators have
been actively researched and commercialized over the past
decade in various form-factors for their own target appli-
cations; servers [69]–[71]; cards [72]–[74]; modules [28],
[30], [75]; and chipsets [76], [77]. However, the existing
AI accelerators are not suitable for the HFT since they are
not sufficient in handling the following technical challenges
of AI integration to HFT simultaneously; (a) small-batch-
centric low-latency operation, (b) fine-grained resource utiliza-
tion control and its hardware support, and (c) high effective
(sustained) T(FL)OPS and/or T(FL)OPS/W performance for
the customized and irregular neural networks in HFT domain.

VI. CONCLUSION

The expanding demands for introducing AI algorithms to
HFT strategies have necessitated a new HFT system that
enables the AI algorithm to meet the latency and through-
put requirements. In this paper, we propose LightTrader,
which enables the AI-based HFT process by incorporating
an FPGA and four CGRA-motivated custom AI accelerators
into a board-level system, together with the advanced work-
load scheduling and power utilization algorithms. Leveraging
the high-performance AI processor, the trading pipeline of
the proposed system achieves up to 13.92× faster latency,
achieving a response rate of 99.5% compared to conventional
HFT systems. Targeting the power-limited environment, Light-
Trader further. The LightTrader further demonstrates advanced
features, i.e., workload scaling and PPW-based DVFS, to
minimize the risk related to the miss rate under the bursty
data traffic, reducing the miss rate by 17.1% and 23.1%.

ACKNOWLEDGEMENTS

The authors would like to express our sincere appreciation
to the contributors of this project in Rebellions; Jaewan Bae,
Kyeongryeol Bong, Yoonho Boo, Karim Charfi, Hyo-Eun
Kim, Hyun Suk Kim, Byungjae Lee, Jaehwan Lee, Myeongbo
Shim, Sungho Shin, and Jeong Seok Woo.

12

REFERENCES

[1] Securities and Exchange Commission. Concept release on equity market
structure, 2010.

[2] Maureen O’hara. High frequency market microstructure. Journal of
financial economics, 116(2):257–270, 2015.

[3] Jonathan Brogaard, Terrence Hendershott, and Ryan Riordan. High-
frequency trading and price discovery. The Review of Financial Studies,
27(8):2267–2306, 2014.

[4] Terrence Hendershott, Charles M Jones, and Albert J Menkveld. Does
algorithmic trading improve liquidity? The Journal of finance, 66(1):1–
33, 2011.

[5] Jonathan Brogaard et al. High frequency trading and its impact on
market quality. Northwestern University Kellogg School of Management
Working Paper, 66, 2010.

[6] Julio E Sandubete and Lorenzo Escot. Chaotic signals inside some tick-
by-tick financial time series. Chaos, Solitons & Fractals, 137:109852,
2020.

[7] Sandrine Jacob Leal and Mauro Napoletano. Market stability vs. market
resilience: Regulatory policies experiments in an agent-based model
with low-and high-frequency trading. Journal of Economic Behavior
& Organization, 157:15–41, 2019.

[8] Eric Budish, Peter Cramton, and John Shim. The high-frequency trading
arms race: Frequent batch auctions as a market design response. The
Quarterly Journal of Economics, 130(4):1547–1621, 2015.

[9] Jean-Philippe Serbera and Pascal Paumard. The fall of high-frequency
trading: A survey of competition and profits. Research in International
Business and Finance, 36:271–287, 2016.

[10] Matteo Aquilina, Eric Budish, and Peter O’neill. Quantifying the high-
frequency trading “arms race”. The Quarterly Journal of Economics,
137(1):493–564, 2022.

[11] Matthew Baron, Jonathan Brogaard, Björn Hagströmer, and Andrei
Kirilenko. Risk and return in high-frequency trading. Journal of
Financial and Quantitative Analysis, 54(3):993–1024, 2019.

[12] Zihao Zhang, Stefan Zohren, and Stephen Roberts. Deeplob: Deep
convolutional neural networks for limit order books. IEEE Transactions
on Signal Processing, 67(11):3001–3012, 2019.

[13] Avraam Tsantekidis, Nikolaos Passalis, Anastasios Tefas, Juho Kanni-
ainen, Moncef Gabbouj, and Alexandros Iosifidis. Using deep learning
to detect price change indications in financial markets. In 2017 25th
European Signal Processing Conference (EUSIPCO), pages 2511–2515.
IEEE, 2017.

[14] Avraam Tsantekidis, Nikolaos Passalis, Anastasios Tefas, Juho Kanni-
ainen, Moncef Gabbouj, and Alexandros Iosifidis. Forecasting stock
prices from the limit order book using convolutional neural networks. In
2017 IEEE 19th Conference on Business Informatics (CBI), volume 01,
pages 7–12, 2017.

[15] James Wallbridge. Transformers for limit order books. arXiv preprint
arXiv:2003.00130, 2020.

[16] Andrés Arévalo, Jaime Niño, German Hernández, and Javier Sandoval.
High-frequency trading strategy based on deep neural networks. In Inter-
national conference on intelligent computing, pages 424–436. Springer,
2016.

[17] Fabien Guilbaud and Huyen Pham. Optimal high-frequency trading with
limit and market orders. Quantitative Finance, 13(1):79–94, 2013.

[18] Álvaro Cartea, Sebastian Jaimungal, and Jason Ricci. Buy low, sell
high: A high frequency trading perspective. SIAM Journal on Financial
Mathematics, 5(1):415–444, 2014.

[19] Álvaro Cartea and Sebastian Jaimungal. Risk metrics and fine tuning
of high-frequency trading strategies. Mathematical Finance, 25(3):576–
611, 2015.

[20] Thomas Grindsted. Algorithms and the antropocene: Finance, sustain-
ability and the promise and hazards of new financial technologies. 2018.

[21] Christian Leber, Benjamin Geib, and Heiner Litz. High frequency
trading acceleration using fpgas. In 2011 21st International Conference
on Field Programmable Logic and Applications, pages 317–322. IEEE,
2011.

[22] Andrew Boutros, Brett Grady, Mustafa Abbas, and Paul Chow. Build
fast, trade fast: Fpga-based high-frequency trading using high-level syn-
thesis. In 2017 International Conference on ReConFigurable Computing
and FPGAs (ReConFig), pages 1–6, 2017.

[23] John W. Lockwood, Adwait Gupte, Nishit Mehta, Michaela Blott, Tom
English, and Kees Vissers. A low-latency library in fpga hardware for

high-frequency trading (hft). In 2012 IEEE 20th Annual Symposium on
High-Performance Interconnects, pages 9–16, 2012.

[24] Chen Yao and Mao Ye. Why trading speed matters: A tale of queue
rationing under price controls. The Review of Financial Studies,
31(6):2157–2183, 2018.

[25] C. Brandauer, G. Iannaccone, C. Diot, T. Ziegler, S. Fdida, and M. May.
Comparison of tail drop and active queue management performance
for bulk-data and web-like internet traffic. In Proceedings. Sixth IEEE
Symposium on Computers and Communications, pages 122–129, 2001.

[26] Irene Aldridge and Steven Krawciw. Real-time risk: What investors
should know about FinTech, high-frequency trading, and flash crashes.
John Wiley & Sons, 2017.

[27] Boming Huang, Yuxiang Huan, Li Da Xu, Lirong Zheng, and Zhuo Zou.
Automated trading systems statistical and machine learning methods and
hardware implementation: a survey. Enterprise Information Systems,
13(1):132–144, 2019.

[28] Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally, Sid-
dharth Samsi, and Jeremy Kepner. Ai accelerator survey and trends. In
2021 IEEE High Performance Extreme Computing Conference (HPEC),
pages 1–9, 2021.

[29] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eyeriss:
An energy-efficient reconfigurable accelerator for deep convolutional
neural networks. IEEE journal of solid-state circuits, 52(1):127–138,
2016.

[30] EETimes and S. Ward-Foxton, “Details of Hailo ai edge
accelerator emerge,” EETimes, 29-Aug-2019. [Online]. Available:
https://www.eetimes.com/details-of-hailo-ai-edge-accelerator-emerge/.
[Accessed: 23-Sep-2022].

[31] Marco Avellaneda and Sasha Stoikov. High-frequency trading in a limit
order book. Quantitative Finance, 8(3):217–224, 2008.

[32] Heiner Litz, Christian Leber, and Benjamin Geib. Dsl programmable
engine for high frequency trading acceleration. In Proceedings of
the Fourth Workshop on High Performance Computational Finance,
WHPCF ’11, page 31–38, New York, NY, USA, 2011. Association for
Computing Machinery.

[33] Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayo-
glu. Financial time series forecasting with deep learning: A systematic
literature review: 2005–2019. Applied soft computing, 90:106181, 2020.

[34] Justin Sirignano and Rama Cont. Universal features of price formation
in financial markets: perspectives from deep learning. Quantitative
Finance, 19(9):1449–1459, 2019.

[35] Mohammad Sadoghi, Martin Labrecque, Harsh Singh, Warren Shum,
and Hans-Arno Jacobsen. Efficient event processing through recon-
figurable hardware for algorithmic trading. Proc. VLDB Endow.,
3(1–2):1525–1528, sep 2010.

[36] RS Tsay. High-frequency data analysis and market microstructure.
Analysis of Financial Time Series, pages 231–285, 2010.

[37] Bruce Vanstone and Tobias Hahn. Data characteristics for high-
frequency trading systems. In Handbook of High Frequency Trading,
pages 47–57. Elsevier, 2015.

[38] Credit Suisse. U.s. market structure hft 101 with tradeworx, 2014.
[39] Christian T Brownlees and Giampiero M Gallo. Financial econometric

analysis at ultra-high frequency: Data handling concerns. Computational
statistics & data analysis, 51(4):2232–2245, 2006.

[40] Jeffrey R Russell and Robert F Engle. Analysis of high-frequency data.
In Handbook of financial econometrics: tools and techniques, pages
383–426. Elsevier, 2010.

[41] Neil Johnson and Guannan Zhao. Brave new world: quantifying the new
instabilities and risks arising in subsecond algorithmic trading. Foresight
Driver Review DR27. UK Government Office for Science, 2012.

[42] Andrei Kirilenko, Albert S Kyle, Mehrdad Samadi, and Tugkan Tuzun.
The flash crash: High-frequency trading in an electronic market. The
Journal of Finance, 72(3):967–998, 2017.

[43] Neil Johnson, Guannan Zhao, Eric Hunsader, Jing Meng, Amith Ravin-
dar, Spencer Carran, and Brian Tivnan. Financial black swans driven
by ultrafast machine ecology. arXiv preprint arXiv:1202.1448, 2012.

[44] John Cartlidge and Dave Cliff. Exploring the ”robot phase transition” in
experimental human-algorithmic markets. Number DR25 in Foresight
Report - The Future of Computer Trading in Financial Markets. UK
Government Office for Science, April 2012. Foresight, The Future of
Computer Trading in Financial Markets, Driver Review DR25, Crown
Copyright 2012.

[45] Jonathan Brogaard, Allen Carrion, Thibaut Moyaert, Ryan Riordan,
Andriy Shkilko, and Konstantin Sokolov. High frequency trading and

13

extreme price movements. Journal of Financial Economics, 128(2):253–
265, 2018.

[46] Anton Golub, John Keane, and Ser-Huang Poon. High frequency trading
and mini flash crashes. arXiv preprint arXiv:1211.6667, 2012.

[47] Samir Abrol, Benjamin Chesir, Nikhil Mehta, and Ron Ziegler. High
frequency trading and us stock market microstructure: a study of inter-
actions between complexities, risks and strategies residing in us equity
market microstructure. Financial Markets, Institutions & Instruments,
25(2):107–165, 2016.

[48] “Fix standards,” FIX Trading Community, 18-Jun-2021. [Online]. Avail-
able: https://www.fixtrading.org/standards/. [Accessed: 23-Sep-2022].

[49] “Ilink 3 binary order entry,” iLink 3 Binary Order Entry.
[Online]. Available: https://www.cmegroup.com/confluence/display/-
EPICSANDBOX/iLink+3+Binary+Order+Entry. [Accessed: 23-Sep-
2022].

[50] Venkatraman Govindaraju, Chen-Han Ho, and Karthikeyan Sankar-
alingam. Dynamically specialized datapaths for energy efficient comput-
ing. In 2011 IEEE 17th International Symposium on High Performance
Computer Architecture, pages 503–514, 2011.

[51] Madhu Saravana Sibi Govindan, Doug Burger, and Steve Keckler. Trips:
A distributed explicit data graph execution (edge) microprocessor. In
2007 IEEE Hot Chips 19 Symposium (HCS), pages 1–13, 2007.

[52] Tony Nowatzki, Vinay Gangadhar, Newsha Ardalani, and Karthikeyan
Sankaralingam. Stream-dataflow acceleration. In 2017 ACM/IEEE
44th Annual International Symposium on Computer Architecture (ISCA),
pages 416–429, 2017.

[53] Yaqi Zhang, Nathan Zhang, Tian Zhao, Matt Vilim, Muhammad Shah-
baz, and Kunle Olukotun. Sara: Scaling a reconfigurable dataflow
accelerator. In 2021 ACM/IEEE 48th Annual International Symposium
on Computer Architecture (ISCA), pages 1041–1054, 2021.

[54] Seth Copen Goldstein, Herman Schmit, Mihai Budiu, Srihari Cadambi,
Matt Moe, and R. Reed Taylor. Piperench: A reconfigurable architecture
and compiler. Computer, 33(4):70–77, apr 2000.

[55] “Interlaken 150G v1.6 product guide”, 04-Oct-2017. [Online]. Available:
https://docs.xilinx.com/v/u/en-US/pg212-interlaken-150g. [Accessed:
23-Sep-2022].

[56] “Kintex UltraScale+ fpgas,” Xilinx. [Online]. Available:
https://www.xilinx.com/products/silicon-devices/fpga/kintex-ultrascale-
plus.html. [Accessed: 23-Sep-2022].

[57] “X2 series ethernet adapters,” Xilinx. [Online]. Available:
https://www.xilinx.com/products/boards-and-kits/x2-series.html.
[Accessed: 23-Sep-2022].

[58] “Alveo U250 Data Center Accelerator Card,” Xilinx. [Online]. Avail-
able: https://www.xilinx.com/products/boards-and-kits/alveo/u250.html.
[Accessed: 23-Sep-2022].

[59] Albert J Menkveld. The economics of high-frequency trading. Annual
Review of Financial Economics, 8:1–24, 2016.

[60] Qiu Tang, Majing Su, Lei Jiang, Jiajia Yang, and Xu Bai. A scalable
architecture for low-latency market-data processing on fpga. In 2016
IEEE Symposium on Computers and Communication (ISCC), pages 597–
603, 2016.

[61] Erkam Guresen, Gulgun Kayakutlu, and Tugrul U. Daim. Using artificial
neural network models in stock market index prediction. Expert Systems
with Applications, 38(8):10389–10397, 2011.

[62] Kai Chen, Yi Zhou, and Fangyan Dai. A lstm-based method for stock
returns prediction: A case study of china stock market. In 2015 IEEE
International Conference on Big Data (Big Data), pages 2823–2824,
2015.

[63] Mahdi Pakdaman Naeini, Hamidreza Taremian, and Homa Baradaran
Hashemi. Stock market value prediction using neural networks. In
2010 International Conference on Computer Information Systems and
Industrial Management Applications (CISIM), pages 132–136, 2010.

[64] David M. Q. Nelson, Adriano C. M. Pereira, and Renato A. de Oliveira.
Stock market’s price movement prediction with lstm neural networks.
In 2017 International Joint Conference on Neural Networks (IJCNN),
pages 1419–1426, 2017.

[65] Gianluca PM Virgilio. A theory of very short-time price change: security
price drivers in times of high-frequency trading. Financial Innovation,
8(1):1–34, 2022.

[66] Ye-Sheen Lim and Denise Gorse. Deep probabilistic modelling of price
movements for high-frequency trading. In 2020 International Joint
Conference on Neural Networks (IJCNN), pages 1–8, 2020.

[67] Aiusha Sangadiev, Rodrigo Rivera-Castro, Kirill Stepanov, Andrey
Poddubny, Kirill Bubenchikov, Nikita Bekezin, Polina Pilyugina, and

Evgeny Burnaev. Deepfolio: Convolutional neural networks for portfo-
lios with limit order book data. arXiv preprint arXiv:2008.12152, 2020.

[68] Zijian Shi, Yu Chen, and John Cartlidge. The lob recreation model:
Predicting the limit order book from taq history using an ordinary
differential equation recurrent neural network. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35, pages 548–556,
2021.

[69] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, et al. In-datacenter performance analysis of a tensor
processing unit. In Proceedings of the 44th annual international
symposium on computer architecture, pages 1–12, 2017.

[70] Dennis Abts, Jonathan Ross, Jonathan Sparling, Mark Wong-VanHaren,
Max Baker, Tom Hawkins, Andrew Bell, John Thompson, Temes-
ghen Kahsai, Garrin Kimmell, Jennifer Hwang, Rebekah Leslie-Hurd,
Michael Bye, E. R. Creswick, Matthew Boyd, Mahitha Venigalla, Evan
Laforge, Jon Purdy, Purushotham Kamath, Dinesh Maheshwari, Michael
Beidler, Geert Rosseel, Omar Ahmad, Gleb Gagarin, Richard Czekalski,
Ashay Rane, Sahil Parmar, Jeff Werner, Jim Sproch, Adrian Macias,
and Brian Kurtz. Think fast: A tensor streaming processor (tsp) for
accelerating deep learning workloads. In Proceedings of the ACM/IEEE
47th Annual International Symposium on Computer Architecture, ISCA
’20, page 145–158. IEEE Press, 2020.

[71] Murali Emani, Venkatram Vishwanath, Corey Adams, Michael E. Papka,
Rick Stevens, Laura Florescu, Sumti Jairath, William Liu, Tejas Nama,
and ∧Arvind Sujeeth. Accelerating scientific applications with sam-
banova reconfigurable dataflow architecture. Computing in Science &
Engineering, 23(2):114–119, 2021.

[72] Linley Gwennap, “Untether Delivers At-Memory AI,” The Lin-
ley Group Microprocessor Report, 2-Nov-2020. [Online]. Available:
https://www.linleygroup.com/mpr/article.php?id=12385. [Accessed: 25-
Sep-2022].

[73] Jasmina Vasiljevic, Ljubisa Bajic, Davor Capalija, Stanislav Soko-
rac, Dragoljub Ignjatovic, Lejla Bajic, Milos Trajkovic, Ivan Hamer,
Ivan Matosevic, Aleksandar Cejkov, Utku Aydonat, Tony Zhou,
Syed Zohaib Gilani, Armond Paiva, Joseph Chu, Djordje Maksimovic,
Stephen Alexander Chin, Zahi Moudallal, Akhmed Rakhmati, Sean
Nijjar, Almeet Bhullar, Boris Drazic, Charles Lee, James Sun, Kei-Ming
Kwong, James Connolly, Miles Dooley, Hassan Farooq, Joy Yu Ting
Chen, Matthew Walker, Keivan Dabiri, Kyle Mabee, Rakesh Shaji Lal,
Namal Rajatheva, Renjith Retnamma, Shripad Karodi, Daniel Rosen,
Emilio Munoz, Andrew Lewycky, Aleksandar Knezevic, Raymond Kim,
Allan Rui, Alexander Drouillard, and David Thompson. Compute
substrate for software 2.0. IEEE Micro, 41(2):50–55, 2021.

[74] Eitan Medina and Eran Dagan. Habana labs purpose-built ai inference
and training processor architectures: Scaling ai training systems using
standard ethernet with gaudi processor. IEEE Micro, 40(2):17–24, 2020.

[75] “ARA-1 Edge Ai Processor Breakthrough AI performance.”
[Online]. Available: https://kinara.ai/wp-content/uploads/2022/08/Ara-
1 ProductBrief.pdf. [Accessed: 23-Sep-2022].

[76] L Gwennap. Released its first ai processor rk3399pro npu performance
up to 2.4tops. Linley Group, Tech. Rep, 2020.

[77] Sally Ward-Foxton. Kneron’s next-gen edge ai chip gets $40m boost.
eetimes asia, 2020.

14

